Neural network-based meta-modelling approach for estimating spatial distribution of air pollutant levels

نویسندگان

  • Herman Bin Wahid
  • Quang Phuc Ha
  • Hiep Duc
  • M. Azzi
چکیده

Continuous measurements of the air pollutant concentrations at monitoring stations serve as a reliable basis for air quality regulations. Their availability is however limited only at locations of interest. In most situations, the spatial distribution beyond these locations still remains uncertain as it is highly influenced by other factors such as emission sources, meteorological effects, dispersion and topographical conditions. To overcome this issue, a larger number of monitoring stations could be installed, but it would involve a high investment cost. An alternative solution is via the use of a deterministic air quality model (DAQM), which is mostly adopted by regulatory authorities for prediction in the temporal and spatial domain as well as for policy scenario development. Nevertheless, the results obtained from a model are subject to some uncertainties and it requires, in general, a significant computation time. In this work, a meta-modelling approach based on neural network evaluation is proposed to improve the estimated spatial distribution of the pollutant concentrations. From a dispersion model, it is suggested that the spatially-distributed pollutant levels (i.e. ozone, in this study) across a region under consideration is a function of the grid coordinates, topographical information, solar radiation and the pollutants precursor emission. Initially, for training the model, the input-output relationship is extracted from a photochemical dispersion model called The Air Pollution Model and Chemical Transport Model (TAPM-CTM), and some of those input-output data are correlated with the ambient measurements collected at monitoring stations. Here, improved radial basis function networks, incorporating a proposed technique for selection of the network centres, will be developed and trained by using the data obtained and the forward selection approach. The methodology is then applied to estimate the ozone concentrations in the Sydney basin, Australia. Once executed, apart from the advantage of inexpensive computation, it provides more reliable results of the estimation and offers better predictions of ozone concentrations than those obtained by using the TAPM-CTM model only, when compared to the measurement data collected at monitoring stations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Spatio-Temporal Analysis of the Distribution of O3 in Tehran City Based on Neural Network and Spatial Analysis in GIS Environment

Air pollution is one of the most problems that people are facing today in metropolitan areas. Suspended particulates, carbon monoxide, sulfur dioxide, ozone and nitrogen dioxide are the five major pollutants of air that pose many problems to human health. The goal of this study is to propose a spatial approach for estimation and analyzing the spatial and temporal distribution of ozone based on ...

متن کامل

New sampling scheme for neural network-based meta- modelling with application to air pollutant estimation

Purpose A new method for the design of experiments (DOE) or sampling technique is proposed, using a distance weight function and the k-means theory. The radial basis function neural network metamodelling approach is used to evaluate the performance of the proposed DOE by using an n-degree of test function, applied to the complex nonlinear problem of spatial distribution of air pollutants. A com...

متن کامل

Neural Network Meta-Modeling of Steam Assisted Gravity Drainage Oil Recovery Processes

Production of highly viscous tar sand bitumen using Steam Assisted Gravity Drainage (SAGD) with a pair of horizontal wells has advantages over conventional steam flooding. This paper explores the use of Artificial Neural Networks (ANNs) as an alternative to the traditional SAGD simulation approach. Feed forward, multi-layered neural network meta-models are trained through the Back-...

متن کامل

ارزیابی کاربرد شبکه عصبی مصنوعی و بهینه‌سازی آن با روش الگوریتم ژنتیک در تخمین داده‌های بارش ماهانه (مطالعه موردی: منطقه کردستان)

Estimating spatial distribution of precipitation is vital to execute water resources plans, drought, land-use plans environment, watershed management, and agricultural master plans. High variation in amount of precipitation in various parts, lack of measurement stations, and the complexity of relationship between precipitation and parameters affecting it have doubled the importance of developin...

متن کامل

An Intelligent Method Based on WNN for Estimating Voltage Harmonic Waveforms of Non-monitored Sensitive Loads in Distribution Network

An intelligent method based on wavelet neural network (WNN) is presented in this study to estimate voltage harmonic distortion waveforms at a non-monitored sensitive load. Voltage harmonics are considered as the main type of waveform distortion in the power quality approach. To detect and analyze voltage harmonics, it is not economical to install power quality monitors (PQMs) at all buses. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2013